Exploring Tuning Strategies for Quantum
Chemistry Computations

Lakshminarasimhan Seshagiri' , Meng-Shiou Wu', Masha Sosonkina', and
Zhao Zhang?

1 Scalable Computing Laboratory, The Ames Laboratory, US DoE
Ames, TA 50011 USA
sln,mswu,masha@scl.ameslab.gov,

2 Department of Electrical and Computer Engineering
Iowa State University
Ames, TA 50011 USA

zzhang@iastate.edu

Abstract. Effective execution of applications using a parallel comput-
ing environment that share resources such as network bandwidth, I/O
and main memory require that some sort of adaptive mechanism be put
in place which enables efficient usage of these resources. The adapta-
tion adjusts the most computationally intensive part of the application
thus leading to an efficient execution. General Atomic and Molecular
Electronic Structure (GAMESS), used for ab-initio molecular quantum
chemistry calculations, uses NICAN for dynamically making adaptations
so as to improve the application performance in heavy load conditions.
The adaptation mechanism uses the iteration time of each SCF iteration
to make a decision. The advantage of such a mechanism is the ability to
modify the application execution in a very simplistic yet effective man-
ner. In this work, we have explored methods to expand this adaptation
mechanism by analyzing the GAMESS performance through the use of
fine-grained data.

Key words: Multi-Core, GAMESS, Niagara, Adaptation, NICAN, TAU,Quantum
Chemistry

1 Introduction

Computational chemistry applications such as GAMESS [12] are widely used to
perform ab-initio molecular quantum chemistry calculations. These calculations
include a wide range of Hartree-Fock (HF) wave function (RHF, ROHF, UHF,
GVB, MCSF) calculations. Such calculations are not only complex but also have
high computational requirements. Using the Self Consistent Field (SCF) method,

This work was supported in part by the National Science Foundation Grants
NSF/OCI-0749156 and NSF/CHE-0535640; and in part by lowa State University
of Science and Technology under the contract DE-AC02-07CH 11358 with the U.S.
Department of Energy.

2 L.Seshagiri et al.

GAMESS iteratively approximates solution to the Schrédinger equation that de-
scribes the basic structure of atoms and molecules. The SCF method is one of
the most computationally intensive parts in the GAMESS execution and it gives
a good indication of the processor computation power as well the I/O capabili-
ties of the system on which GAMESS is being run. It has two implementations,
direct and conventional, which differ from each other in the handling of the two-
electron (2-¢) integrals. In the conventional SCF method, the 2-e integrals are
calculated once at the beginning of the SCF process and stored in a file on disk
for subsequent iterations. This could prove to be resource intensive in terms of
disk space and file systems requirements on certain systems. In the direct SCF
method, the 2-e integrals are recalculated for each iteration and it’s a compu-
tationally intensive process. GAMESS calculations utilize distributed resources
like memory and disk storage; the HF wave function solution also depends on a
lot of other factors like the wave function solution method, the input molecule,
basis set and the underlying hardware. The numerous complex computations
involved in the calculations of HF wave function solution and the amount of
system resources affect application performance.

GAMESS is just one of many computational chemistry applications that are
available which offer a range of theoretical methods with varying implementa-
tions. As described above, each quantum chemistry application is characterized
by different input parameters and the execution performance is also dependent
on the underlying hardware. For example, the current computer architectures
are moving towards many-core and this will likely affect the application input
parameter combination for best possible performance. In a dynamic execution
environment, where different applications are running at the same time, the
ability of an application to adapt itself to the varying system conditions is very
important. Such a tuning capability can be designed for an application, but
this requires that the performance data and the application specific metadata
is first collected and analyzed. Considering the number of system and applica-
tion parameters that affect the performance, performance analysis is not easy
task. In this work, we have conducted a large number of experiments on several
architectures to collect performance data of different granularity as the foun-
dation to develop tuning strategies. By analyzing these data, we have acquired
more in-depth understanding of how different architectures affect performance
of GAMESS computations, thus helping us in exploring tuning strategies for
complex quantum chemistry computations.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work in computational quantum chemistry. Section 3 describes the
workload used, the architecture of the execution environment and the tools uti-
lized to get the data. Section 4 describes the performance of GAMESS on the
different architectures. In the Section 5 we propose the tuning strategy based on
the observations from the previous sections. We have not fully implemented the
tuning strategy yet but with we have incorporated different parameters affecting

Tuning Strategies for Quantum Chemistry Computations 3

GAMESS performance, thereby improving the dynamic adaptation of GAMESS.
Finally we give the conclusions and the future work in Section 6.

2 Related Works

There are many different approaches to tuning high performance chemistry ap-
plications like compiler based optimizations, performance modeling and adap-
tive algorithms. [4-7] have showcased such adaptations in the high performance
computing domain. Concurrently, in [3], the authors have described a component
based method to provide easy accesses to different scientific computing appli-
cations. This work enables CQoS(Computation Quality of Service) through a
generic database component that interacts with different chemistry components
and a classifier to provide an adaptive mechanism that achieves better perfor-
mance than any trial and error approach. In [15], a middleware tool NICAN was
used to perform this adaptation in GAMESS. It takes advantage of the fact that
the SCF process is iterative in nature and the two implementations can be in-
terchanged. NICAN helps to decouple the application from having to make any
adaptation decisions during the execution. The application is responsible only
for the invocation of the adaptation handlers. The adaptations are handled by a
control port that is a part of the NICAN tool. The NICAN adaptation process
and its results for SMP clusters is explained in detail in [15]. We propose to
extend the NICAN functionality to incorporate the tuning strategy devised in
this paper.

3 Methodology

We have observed in [15] and in [3] that the data used to adapt the application is
very coarse grained and coarse grained implies that the adaptation algorithm de-
pends only on the wall clock time. In [15], the data regarding the iteration time is
collected on-the-fly and utilized by the middleware NICAN in order to make the
adaptation decision. This mechanism makes the tuning decision depending on
whether the iteration time is above a certain limit. In [3], the data is collected of-
fline and fed into a database which helps the CCA components to make a decision
on tuning the quantum chemistry application. While these approaches provide
certain adaptive mechanisms, using only coarse-grained performance prevents
us from gaining insight into how and why a computation performs differently
on different architectures, and why different sets of molecules can show totally
different performance characteristics. To design tuning strategies that cover such
large parameter sets, a methodology that covers from data acquisition, perfor-
mance data and metadata management to performance analysis is desired.

The first step is to choose an application workload that is diverse enough
to help us to discern between different nuances of the performance output. The
molecules need to be useful in the practical sense since that allows us to obtain

4 L.Seshagiri et al.

data that is as close as possible to a real life scenario. All the molecules that
we have chosen are important from the point of view of chemistry and biology.
The molecules chosen in our tests include molecules representing fundamental
aromatic systems, represent models used for DNA stacking and protein folding
and are part of carbon nano materials. More information regarding the input
molecules has been provided in the Application Workload subsection. The ap-
plication performance depends a lot on the hardware on which it is run. Each
hardware characteristic such as the processor type, the cache design, the mem-
ory bandwidth and the inter-nodal connection determine the application perfor-
mance to a great extent. We require performance data from diverse architectures
in order to cover as much of the architectural features as possible. The details re-
garding the three different architectures that we have chosen in accordance with
our requirements have been given in the Architectures Used subsection. The data
collection is a very laborious process considering that hundreds of data files have
to be collected over different architectures and different input parameter settings.
The code profiler used to collect the data needs to be available and proven to
work over different operating systems and different processor architectures. One
such tool is the TAU toolkit [2], and more details regarding its usage in our data
collection have been described in the subsection Tools Used.

Application Workload

In [1], we had chosen Luciferin and Ergosterol molecules to test the GAMESS
performance on a SMP cluster and a Sun Niagara T2 processor. These two
molecules were also used to test the NICAN adaptation strategy on the Sun
Niagara T2 processor. These molecules were chosen because of the relative dif-
ference in their execution times on the above two architectures. In this work, we
have chosen two different sets of molecules. The first set contains 7 molecules
having varying molecular structure as shown in Figure 1. These molecules are
Benzene(bz) and its dimer, Naphthalene (np) and its dimer, Adenine-Thymine
DNA base pair (AT), Guanine-Cytosine DNA base pair(GC) and Buckminster-
fullerene (C60). The number of basis functions are shown in parenthesis. This
diverse set of molecules allows us to see if there are any similar characteristics
in the performance data. The details regarding their practical usage is given in [3]

The second is a set of 6 Benzene molecules that are very similar in their
structures. The molecules are Picene, Pentacene, Dibenz Anthracene (J and
H) , Benzo naphthacene and Benzo triphenylene. This is advantageous since it
gives us a group of molecules having a very similar molecular structure with very
little differences. We can study the performance characteristics in very minute
detail due to this property. We can also check and confirm if the performance
characteristics of one molecule can be applied to the rest of the molecules in the
set.

Tuning Strategies for Quantum Chemistry Computations 5

bz-dimer(228) np-dimer(360) GC(316)

Fig. 1. Hiro Inputs

Architectures Used

We used three different architectures to get the performance data. The first is an
Ames Lab SMP cluster “Borges” that consists of 4 nodes, each node having two
dual-core 2.0GHZ Xeon “Woodcrest” CPUs and 8GB of RAM [8]. The nodes
were interconnected with both Gigabit Ethernet and DDR Infiniband. Each pro-
cessor has a shared 4MB L2 cache. It also contains a 32KB L1 instruction and
data cache per core.

The second architecture used for testing was the Sun T2 Niagara proces-
sor (T2) [18,21]. The T2 processor has a unique architecture that consists of 8
SPARC physical processor cores built in a single chip and each core is capable
of running 8 threads. Each of these threads can be considered to be a processor
in itself and are called as Virtual Processors (VP). Thus a user application sees
itself running on a machine of 64 processors rather than on a processor con-
taining 8 cores. The VPs operate at a frequency of 1167 MHz. Each of these
cores contains full hardware support for the eight VPs. There are two integer
execution pipelines, one floating-point pipeline and one memory pipeline inside
a single core that are shared between all the VPs. The eight VPs are divided into
two groups of four each with the VPs 0-3 occupying one group and 4-7 occupy-
ing the other group. Obviously, the hardware support inside a single core also
gets divided accordingly with each group of VP having access to a single inte-
ger pipeline and sharing the floating point and memory pipelines. Each SPARC
physical core contains a 16 KB, 8-way associative instruction cache (32-byte
lines), 8 KB, 4-way associative data cache (16-byte lines), 64-entry fully associa-
tive instruction TLB, and 128-entry fully associative data TLB that are shared
by the eight VPs. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 4 MB, 16-way associative L2 cache (64-byte lines)

6 L.Seshagiri et al.

which is banked eight ways to provide sufficient bandwidth for the eight SPARC
physical cores.

The third machine used is Franklin, which is a massively parallel processing
(MPP) CRAY-XT4 system with 9,572 compute nodes provided for scientific use
by NERSC(National Energy Research Scientific Computing Center). Each node
has quad processor cores, and the entire system has a total of 38,128 processor
cores available for scientific applications. Each of Franklin’s compute nodes con-
sists of a 2.3 GHz single socket quad-core AMD Opteron processor “Budapest”
with a theoretical peak performance of 9.2 GFlop/sec per core (4 flops/cycle if
using SSE128 instructions). Each compute node has 8 GB of memory (2 GB
of memory per core). Each compute node is connected to a dedicated SeaStar2
router through Hypertransport with a 3D torus topology.

Tools Used

The adaptation in [3] uses wall clock time while the adaptation mechanism de-
scribed in [15] uses the individual SCF iteration time. These methods have
proven to be successful but they do not provide the complete picture on the
application behavior on different architectures. Given that we have a large num-
ber of molecules and their large number of input parameters, it is possible that
there are many conditions where the adaptation mechanism does not provide the
desired performance improvement. To explore adaptation mechanisms to handle
complex scenarios, we need to profile the application, obtain performance data
for a wide range of test parameters and then analyze the obtained data. For any
scientific application, the runtime can be represented as a sum of the time spent
by the application in computing the required data, the time spent by different
threads of the program communicating with each other and the time spent by
the program in moving the data back and forth between the disk and the mem-
ory (the time spent in I/0). These three components usually provide a good
insight as to where the application is getting slowed down during its execution
and can be obtained using profiling tools. This led us to use the TAU [2] (Tun-
ing and Analysis Utility) toolkit, which is a popular multi-level and multi-user
source code profiler and instrumentor. Since TAU can extract metadata such as
the application and system characteristics to the granularity required by us in
these experiments, it is extremely useful in our work.

4 Performance Results and Observations

The performance data were collected for different combinations of the proces-
sors and GAMESS processes. It is not possible to represent performance data
for all the 13 molecules here. Hence the performance data have been shown for
the np-dimer and C60 molecules since they allow us to showcase the important
observations leading to the tuning mechanism. There were a couple of failures,
which we would like to note here. One recurring theme that we found out was

Tuning Strategies for Quantum Chemistry Computations 7

that the C60 molecule failed every time we used the MP2 “electron correlation”
calculation due to its high memory requirement. The picene molecule (part of
the second set of 6 benzene molecules) failed on the Niagara machine only when
running the TAU instrumented code. We have observed that the failure could
be due to TAU invariably changing some variable in case of picene. Let us now
look at all the observations from the results that were obtained. The results
have been shown in Figures 2, 3 and 4. The figures are calibrated with respect
to the combination of the number of processors per node and the input type
(MPO or MP2). For example, “2x4” implies that GAMESS application data has
been collected with the job executing on 2 Nodes, running 4 GAMESS processes
each. It is important to remember that on Franklin and Borges, we cannot run
more than 4 GAMESS processes per node while on the Niagara machine, we can
run 8 processes per core. In case of the Niagara machine, “2X4” implies 2 cores
running 4 GAMESS processes each.

np-dimer Conventional Franklin np-dimer Direct Franklin
400 400

350 T 350 ——
[Comptn Time

300 + CComptnTime |]
10 Time

300 1 @10 time E—

L} i 4
250 Comm Time 250

| 8 comm Time

200 200 1

Time
Time

150 1 150

100
100

50
50

0 -

o

F P PP
A V2 V2R)

S L LR U T ® Joal ol Al ar
} 3’ v b3 (QQ \(\Q &Q (QQ &Q ((\Q @Q &Q

o/ A/
& K

Input C

(a) (b)

37

a7
&

@Q
Input Combination

Fig. 2. (a)np-dimer conventional molecule results on Franklin (b)np-dimer direct
molecule results on Franklin

From the results shown in Figures 2, 3 and 4, we can clearly see that the
execution time for the conventional implementation is different than the direct
implementation on all the three architectures for the np-dimer molecule. This dif-
ference exists for all the molecules tested in the course of these experiments. For
most molecules, we found that the conventional implementation is faster but for
larger molecules like C60 and Ergosterol (As shown in [1]), the direct implemen-
tation is faster. This difference is exploited in the existing adaptive mechanism
implemented through NICAN discussed in [15]. It was established in this paper

8 L.Seshagiri et al.

np-dimer Conventional Borges np-dimer Direct Borges
1200 2500
1000 +— CComptn Time —— 2000 1 I Comptn Time
10 Time ©10 Time
800 MComm Time B Comm Time

1500

Time

Time

600

1000
400

200 - 500 -

0 0

WS JIRL L L L Sy JR G W L g N0 L S N JRTL S PG SR L e Ay
oF ToF T T T T NSNSV SN IS
@Q @Q @Q &Q @Q @Q @Q &Q &Q @Q @Q @Q @Q @Q &Q @Q @Q @Q @Q @Q @Q @Q @Q &Q

Input Combination Input Combination
(a) (b)

Fig. 3. (a)np-dimer conventional molecule results on Borges (b)np-dimer direct
molecule results on Borges

that given a high I/O usage on a system, the conventional method slows down
considerably and switching to the direct implementation using NICAN middle-
ware ensures better GAMESS performance.

From Figures 2, 3 and 4, it’s clear that on all the three architectures, the total
time taken for MP2 is at least 3 times higher than the time taken to complete
MPO calculations. In some cases, the MP2 time is nearly 10 times as high as
the time taken to complete the MPO calculations. On comparison of the three
performance timings for MP0 and MP2, we can see that the I/O time and the
computation time are fairly constant in both these implementations but there
is an increase in the communication time. This seems counter-intuitive since we
would expect MP2 calculations to increase the computation time. However, this
can be explained by how the MP2 calculations are performed. In case of MP2
calculations, four matrices are created to hold the output at each node and then
these matrices are aggregated. The cost involved in transmitting this data over
the network is huge and results in an increase in the communication time. MP2
calculations give a higher degree of accuracy over MP0. Switching between the
two cases does not actually make sense since the user has opted for MP2 in
order to obtain this accuracy. Its obvious that for such cases, other switching
techniques would need to adopted.

In order to develop other switching techniques for the GAMESS molecules,
we need to deduce other application characteristic patterns through Figures 2,
3 and 4. These figures are for the molecule np-dimer for different combinations
of nodes and processes per node. On Franklin (figure 2), if we keep the total

Tuning Strategies for Quantum Chemistry Computations 9

np-dimer Conventional Niagara np-dimer Direct Niagara
2500 3500

[J Comptn Time H 3000 | - Comptn Time
| BI0time

2000 -

10 time —‘

| Mcomm Time

n 2500
 Comm Time

1500

2000

Time
Time

1000 - 1500

p I

0

1000

500

o

@ 4™ @ 4
FF LS LR

ST YA N A 2 2

&S & &S ES &
Input Combination Input Combination
(a) (b)

Fig.4. (a)np-dimer conventional molecule results on Niagara (b)np-dimer direct
molecule results on Niagara

number of processes as 8, then we get three different combinations of 2x4, 4x2
and 8x1. For the conventional MP0O method, the cost of I/O varies from 42 sec-
onds for 2x4 to 15 seconds for 4x2 to 12 seconds for 8x1. A similar trend can
be seen for MP2 conventional as well. If we increase the number of processes on
a single node instead of distributing amongst more nodes, it may be deduced
that the I/O contention increases. However, this observation does not work in
the case of 4x2 and 4x4. The I/O time falls when we move from 4x2 to 4x4. The
I/O contention depends on the bandwidth, the I/O channel and memory system
interconnection structure, data size and the operating system. A more thorough
investigation will be needed to untangle the complex interactions among the
system resources. Consider the Figure 5, which shows the results for the C60
molecule on Franklin. We found that C60 successfully executes only if at least
16 processes are spawned irrespective of the distribution on the nodes. Hence
the C60 conventional results have been given for 4X4, 8X2, 8X4, 16X1, 16X2
and 16X4 combinations. For the conventional molecule, as we keep the number
of processes constant and change the number of nodes on which the job is run,
we can see a general reduction in the runtimes. For the input combinations of
4X4, 8X2 and 16X1, the computation time is nearly constant while the I/O and
communication time reduces. Intuitively, for better performance, we are looking
at getting more resources for the application. However, as the number of cores
per node increases, the complex interaction among system resources, gives us a
more unpredictable nature of results. This can be seen in the results for 16X1,
16X2 and 16X4. The I/O and computation time reduce and the communication
time remains fairly constant when the number of processes increases from 1 to
2. But the communication time increases dramatically when the number of pro-

10 L.Seshagiri et al.

C60 Conventional Franklin C60 Direct Franklin
900 900
[Comptn Time "
800 . R a00 [Comptn Time
10 Time | 10 Time
700 = W Comm Time 700 1 — B Comm Time
600 600
g 500 o 500
F 400] £
¥ 400
300 || || 300
200 200
100 ’—‘ 100
0 o = e
» o N 03 o 0y
o AR A MpO_4X4 mp0_8X2 mp0_16X1 mp0_8X4 mp0_16X2
QQ 7’ QQ 2 QQ/ QQ ’ Qo/ QQ 7 . i
<& <& & & & &S Input Combinations
Input Combinations
(a) (b)

Fig. 5. (a)C60 conventional molecule results on Franklin (b)C60 direct molecule results
on Franklin

cesses on a single node is increased to from 2 to 4. This trend indicates that for
larger molecules, at higher distribution of processes among nodes, there is a very
good chance that the conventional method gives rise to I/O contention or the
operating system does not handle well for I/O with large data size requests. We
would require more fine-grained performance data for further investigation. The
more consistent trend that we can observe here is that of the communication
cost increasing when the number of processes on a single node is increased. This
trend can possibly be exploited in such a way that the distribution of processes
among different nodes is modified to obtain the least communication cost possi-
ble.

Referring to Figure 3, which indicates the results for np-dim on Borges, we
can see that for the 1x2 and 2x1 combinations, there is a big increase in the
computation cost while the communication cost reduces. This is consistent for
other combinations like 1x4 and 4x1, 2x4 and 4x2 though in a lesser degree,
and for these mentioned combinations in the direct implementation. This is sur-
prising since intuitively we expect the communication cost to increase when
the processes get distributed over the network. One of the possible reasons for
this could be an issue with the shared memory and inter-nodal communications
and more fine-grained data is required for investigating this issue. The results
also show good scalability on this architecture for both direct and conventional
method. The increase of the number of processors on a single node does not
change any of the characteristics associated with the application. The percent-
age of communication, I/O and computation times remains constant as we move
from 1x2 to 1x4 or from 2x1 to 2x2. However, the performance characteristics

Tuning Strategies for Quantum Chemistry Computations 11

€60 Conventional Borges €60 Direct Borges
5000 9000
4500 8000
4000
7000
3500 u
6000
o 3000 |
'E 2500 - 2 5000
2000 {1 Comptn Time " 4000 [Comptn Time
1500 | 510 Time 3000 510 Time
1000
: 2000 B Comm Time
500 - B Comm Time !
1000
0
0
IR R R\ L3
F A A R R
QQ/ QQ/ QQ/ QQ/ QQ/ QQ/ QQ/ Q} Q} Q} Q’} QE‘ Q'/L g?
& & & 88 &8 S L LLRK
Input Combinations Input Combinations
(a) (b)

Fig. 6. (a)C60 conventional molecule results on Borges (b)C60 direct molecule results
on Borges

change when we move from 2x2 to 2x4 or from 4x1 to 4x2, which shows that
increasing the number of processes from 4 to 8 probably caused this. Also, it is
important to note that the Borges cluster might not be as fine-tuned as Franklin
since Franklin is a cluster being used by the scientific community and this could
result in some adverse results being more prominent on Borges.

The observations from the results for np-dimer on the Niagara machine are
shown in Figure 4,. We can notice that the ratio of I/O on the Solaris machine
is much higher than the ratio of I/O on the other machines for the conventional
method. The Niagara machine can be considered as a single node multi-core
machine that can run multiple threads on each of its cores. The cache system
is shared between the cores using a crossbar architecture, which ensures that
the time taken to access the cache is constant for all the cores. The memory
bandwidth gets shared among the cores. Hence for larger number of processes,
there is a good possibility of contention. As we increase the distribution of the
GAMESS threads among the cores, the time taken to complete the execution
goes down. This is due to the increase in the amount of hardware available for
execution. The scalability of the Niagara processor was shown in [1]. However,
we would need more performance data to have a better understanding of this
architecture. It would suffice to say that with the data we have, the I/O does
seem to be a bottleneck. On such architectures, an adaptation strategy can be
designed which would look to distribute the number of processes to the max-
imum available cores and thus improve application performance. However, we
can also see from the results that the scalability is not high enough. Even after
increasing the number of cores from 1 to 8, the performance improves by a factor

12 L.Seshagiri et al.

of 2.

5 Tuning Strategy

The observations in Section 4 helps us in formulating the tuning strategy and
in incorporating them into NICAN. The usage of NICAN has been explained
in detail in [15] and [1]. The NICAN adaptation mechanism consists of a static
and a dynamic part. Every conventional GAMESS job gets modified to a direct
execution mode if there is a “peer” conventional GAMESS job already running
in the system. It was shown in [16] that while running concurrent scattered
GAMESS jobs, a single conventional job helps to achieve better performance.
This constitutes the static adaptation method. The dynamic adaptation is used
during the iterative SCF calculations. The NICAN structure shown in Figure
7 consists of a control port which has a handle to the GAMESS application.
After every SCF iteration, the control port checks for different parameters such
as “peer” GAMESS jobs and system resources in order to determine the best
possible method to perform the next SCF iteration. Depending on this infor-
mation, it switches between conventional and direct implementations in order to
achieve best possible performance. The static and dynamic adaptations can be
controlled by the user through a NICAN input file.

Begin Iteration

Check Iteration
Performace

GMS_NCN Controller
T Check System
handler L Adapt? Resoux)"ces

Check peer

HF Calculation GAMESS jobs

End Iteration

R

Manager

Fig. 7. NICAN control port structure

The tuning strategy that we propose on the basis of the results obtained will
augment the existing NICAN adaptation strategy. Considering the amount of
information available, it is prudent to utilize a database for storing this informa-
tion. The NICAN manager spawns a thread that connects to the database and
gets the required information. The current implementation of NICAN requires
a check run in order to get the memory requirements of the input molecule.
We propose that this information can be loaded offline into the database. One
important information that can be offloaded into the database is the size of the

Tuning Strategies for Quantum Chemistry Computations 13

files that will be written on the disk in case of a conventional implementation.
The external disk sizes on clusters are normally huge. However, its possible that
in case of small clusters, the disk size might get exceeded due to residual files.
This information would allow NICAN to calculate the amount of space available
to store integral files and in case that sufficient space is not available, the im-
plementation can be modified to direct. Check runs are also useful in cases such
as the MP2 calculations for C60 molecules where they provide the user with the
exact input memory requirements in order for the job to successfully execute.
This information can be stored in the database, which would ensure that the job
is stopped immediately after NICAN checks the input parameters and not when
the MP2 calculations are being done.

The adaptation between conventional to directis an existing feature in NICAN
and we don’t intend to modify the algorithm. However, we will incorporate
database access as a NICAN module due to easy extensibility to the NICAN
features. From the results obtained, we have seen the best combination to obtain
the most efficient application performance. These combinations can be stored in
the database for each particular operating environment. For example, on a Sun
T2 Niagara machine, the best method to obtain fastest application run time
would be to distribute the number of GAMESS processes to on as many cores as
possible. Obviously, this adaptation would be possible only if there are cores or
nodes (in case of Franklin and Borges) available so as to distribute the processes.
The scalability of GAMESS on the Niagara machine is something, which needs
to be studied, but we can get a decent speed up for large molecules by increasing
the number of cores used for execution. It is also important to note that the ap-
plication characteristics on different input processor and node combinations such
as the computation time, I/O time and communication time differ from one ex-
ecuting environment to another as observed in Section 4. Hence, NICAN needs
to have the ability to recognize the architecture on which it is currently run-
ning. Such recognition will help the application to dynamically adapt to varying
system conditions.

6 Conclusions and Future Work

In this work, we have conducted a preliminary performance analysis of GAMESS
in order to develop an automatic tuning strategy. Quantum chemistry applica-
tions such as GAMESS have numerous input parameters, which determine their
performance characteristics. Also, the architecture on which the application is
executed makes a difference to the application performance. The performance
data collected has given us good directions to proceed. There are a few trends
that stand out despite the differing architectures. These include, MP2 is taking
more time than MPO to complete due to the increase in communication cost;
direct taking more time than the conventional implementation for all the tests
conducted till now. The tuning strategy has been briefly mentioned in the Sec-

14

L.Seshagiri et al.

tion 5.

Future work includes running more performance evaluation tests on the three

architectures mentioned above. There are open issues to resolve such as the I/0
contention when the processes get split among different nodes, the effect of archi-
tecture and the operating system on the I/O contention and the communication
bottleneck which could be due to shared memory communications. The current
level of instrumentation and profiling is not enough to give the required informa-
tion to deduce the reasons for the above issues. Hence we would need to conduct
more performance analysis in order get to the bottom of these issues.

References

1.

10.

11.

Lakshminarasimhan Seshagiri, Masha Sosonkina and Zhao Zhang Electronic Struc-
ture Calculations and Adaptation Scheme in Multi-core Computing Environments
In Proceedings of 2009 International Conference on Computational Science (ICCS-
2009), Baton Rouge, Louisiana, May 25-27, 2009

. Shende, S. , Malony A. The TAU parallel performance system Int. J. High-Perf.

Computing Appl., ACTS Collection special issue 20 (Summer 2006) 287-331

Li Li and Joseph P. Kenny and Meng-Shiou Wu and Kevin Huck and Alexander
Gaenko and Mark S. Gordon and Curtis L. Janssen and Lois Curfman Mclnnes
and Hirotoshi Mori and Heather M. Netzloff and Boyana Norris and Theresa L.
Windus Adaptive Application Composition in Quantum Chemistry Proceedings of
The 5th International Conference on the Quality of Software Architectures (QoSA
2009) February 2009

Jack Dongarra and Victor Eijkhout Self-adapting Numerical Software for Next
Generation Applications INT. J. HIGH PERF. COMPUT. APPL, 2003

Liu, Hua and Parashar, Manish Enabling self-management of component-based
high-performance scientific applications HPDC ’05: Proceedings of the High Per-
formance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE Inter-
national Symposium

Tapus, Cristian and Chung, I-Hsin and Hollingsworth, Jeffrey K. Supercomputing
’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing 2002
Vuduc, Richard and Demmel, James W. and Bilmes, Jeff A. Statistical Models
for Empirical Search-Based Performance Tuning Int. J. High Perform. Comput.
Appl., 2004, pg 65-94

Christian Terboven, Dieter an Mey and Samuel Sarholz. OpenMP on Multicore
architectures. A Practical Programming Model for the Multi-Core Era, Lecture
Notes in Computer Science, Springer, Berlin Heidelberg, 54-64 (2008).

D. Kulkarni and M. Sosonkina. A framework for integrating network information
into distributed iterativesolution of sparse linear systems. High Performance Com-
puting for Computational Science - VECPAR, 2002, 5th International Conference,
Porto, Portugal, June 26-28, 2002, Selected Papers and Invited Talks, volume 2565
of Lecture Notes in Computer Science, pages 436450. Springer, 2003.

E.H. White, F. Capra, W.D. McElIroy. The Structure and Synthesis of Firefly
Luciferin J. Am. Chem. Soc., 83(10), 2402-2403(1961).

John L Hennessy, David A. Patterson with contributions by Andrea C. Arpaci-
Dusseau [et al.]. Computer architecture: A quantitative approach 4th ed. Morgan
Kaufmann, 2006.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Tuning Strategies for Quantum Chemistry Computations 15

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A.
Montgomery. General Atomic and Molecular Electronic Structure System. Journal
of Computational Chemistry, 14, 1347-1363(1993).

M. Sosonkina. Adapting Distributed Scientific Applications to Run-time Network
Conditions. In Applied Parallel Computing, State of the Art in Scientific Com-
puting, 7th International Workshop, PARA 2004, Revised Selected Papers, volume
3732 of Lecture Notes in Computer Science, pages 745-755. Springer, 2006.

M. Sosonkina, S. Storie. Parallel performance of an iterative method in cluster
environments: an experimental study. In Proceedings PMAA 2004, October 2004.
Nurzhan Ustemirov, Masha Sosonkina, Mark S. Gordon and Michael W. Schmidt.
Dynamic Algorithm Selection in Parallel GAMESS Calculations. International
Conference Workshops on Parallel Processing, (ICPPW’06).

Nurzhan Ustemirov, M. Sosonkina, M.S. Gordon, M.W. Schmidt. Concurrent Ex-
ecution of Electronic Structure Calculations in SMP Environments. In Proceedings
HPC 2005, April 2005.

Nurzhan Ustemirov, M. Sosonkina. Efficient Execution of Parallel Electronic Struc-
ture Calculations on SMP Clusters. Minnesota Supercomputing Institute Technical
Report umsi-2005-227, University of Minnesota, 2005.

Poonacha Kongetira. A 32-way Multithreaded SPARC(R) Processor. In Proceed-
ings of the 16th Symposium On High Performance Chips (HOTCHIPS), 2004.
Richard McDougall and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture. Prentice Hall, 2006.

R. M. Olson, M. W. Schmidt, M. S. Gordon, A. P. Rendell. Enabling the Effi-
cient Use of SMP Clusters: The GAMESS/DDI Model, Proceedings of the 2003
ACM/IEEE conference on Supercomputing, p.41, November 15-21, 2003.

Sun Microsystems Inc. http://www.sun.com/processors/UltraSPARC-T2/.

Vahid Kazempour, Alexandra Fedorova, Pouya Alagheband Performance Implica-
tions of Cache Affinity on Multicore Processors. Euro-Par 2008: 151-161.

Wu, M.-S. and Bentz, J.L. and Peng, F. and Sosonkina, M. and Gordon, M.S. and
Kendall, R.A. Integrating Performance Tools with Large-Scale Scientific Software.
IEEE International Parallel and Distributed Processing Symposium, 2007. IPDPS
2007.

